Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Elife ; 112022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36515265

RESUMEN

Adult (3 month) mice with cardiac-specific overexpression of adenylyl cyclase (AC) type VIII (TGAC8) adapt to an increased cAMP-induced cardiac workload (~30% increases in heart rate, ejection fraction and cardiac output) for up to a year without signs of heart failure or excessive mortality. Here, we show classical cardiac hypertrophy markers were absent in TGAC8, and that total left ventricular (LV) mass was not increased: a reduced LV cavity volume in TGAC8 was encased by thicker LV walls harboring an increased number of small cardiac myocytes, and a network of small interstitial proliferative non-cardiac myocytes compared to wild type (WT) littermates; Protein synthesis, proteosome activity, and autophagy were enhanced in TGAC8 vs WT, and Nrf-2, Hsp90α, and ACC2 protein levels were increased. Despite increased energy demands in vivo LV ATP and phosphocreatine levels in TGAC8 did not differ from WT. Unbiased omics analyses identified more than 2,000 transcripts and proteins, comprising a broad array of biological processes across multiple cellular compartments, which differed by genotype; compared to WT, in TGAC8 there was a shift from fatty acid oxidation to aerobic glycolysis in the context of increased utilization of the pentose phosphate shunt and nucleotide synthesis. Thus, marked overexpression of AC8 engages complex, coordinate adaptation "circuity" that has evolved in mammalian cells to defend against stress that threatens health or life (elements of which have already been shown to be central to cardiac ischemic pre-conditioning and exercise endurance cardiac conditioning) that may be of biological significance to allow for proper healing in disease states such as infarction or failure of the heart.


Asunto(s)
Adaptación Fisiológica , Miocitos Cardíacos , Estrés Fisiológico , Animales , Ratones , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/fisiopatología , Ventrículos Cardíacos/patología , Ventrículos Cardíacos/fisiopatología , Hipertrofia/fisiopatología , Ratones Transgénicos , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/patología , Humanos
2.
JACC Clin Electrophysiol ; 8(10): 1191-1215, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36182566

RESUMEN

BACKGROUND: The sinoatrial node (SAN) of the heart produces rhythmic action potentials, generated via calcium signaling within and among pacemaker cells. Our previous work has described the SAN as composed of a hyperpolarization-activated cyclic nucleotide-gated potassium channel 4 (HCN4)-expressing pacemaker cell meshwork, which merges with a network of connexin 43+/F-actin+ cells. It is also known that sympathetic and parasympathetic innervation create an autonomic plexus in the SAN that modulates heart rate and rhythm. However, the anatomical details of the interaction of this plexus with the pacemaker cell meshwork have yet to be described. OBJECTIVES: This study sought to describe the 3-dimensional cytoarchitecture of the mouse SAN, including autonomic innervation, peripheral glial cells, and pacemaker cells. METHODS: The cytoarchitecture of SAN whole-mount preparations was examined by three-dimensional confocal laser-scanning microscopy of triple immunolabeled with combinations of antibodies for HCN4, S100 calcium-binding protein B (S100B), glial fibrillary acidic protein (GFAP), choline acetyltransferase, or vesicular acetylcholine transporter, and tyrosine hydroxylase, and transmission electron microscopy. RESULTS: The SAN exhibited heterogeneous autonomic innervation, which was accompanied by a web of peripheral glial cells and a novel S100B+/GFAP- interstitial cell population, with a unique morphology and a distinct distribution pattern, creating complex interactions with other cell types in the node, particularly with HCN4-expressing cells. Transmission electron microscopy identified a similar population of interstitial cells as telocytes, which appeared to secrete vesicles toward pacemaker cells. Application of S100B to SAN preparations desynchronized Ca2+ signaling in HCN4-expressing cells and increased variability in SAN impulse rate and rhythm. CONCLUSIONS: The autonomic plexus, peripheral glial cell web, and a novel S100B+/GFAP- interstitial cell type embedded within the HCN4+ cell meshwork increase the structural and functional complexity of the SAN and provide a new regulatory pathway of rhythmogenesis.


Asunto(s)
Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Nodo Sinoatrial , Animales , Ratones , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Conexina 43/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Colina O-Acetiltransferasa/metabolismo , Proteínas de Transporte Vesicular de Acetilcolina/metabolismo , Actinas/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Canales de Potasio/metabolismo , Encéfalo , Proteínas de Unión al Calcio/metabolismo , Nucleótidos Cíclicos/metabolismo
4.
Function (Oxf) ; 3(2): zqab065, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35229078

RESUMEN

ATP synthase (F1Fo) synthesizes daily our body's weight in ATP, whose production-rate can be transiently increased several-fold to meet changes in energy utilization. Using purified mammalian F1Fo-reconstituted proteoliposomes and isolated mitochondria, we show F1Fo can utilize both ΔΨm-driven H+- and K+-transport to synthesize ATP under physiological pH = 7.2 and K+ = 140 mEq/L conditions. Purely K+-driven ATP synthesis from single F1Fo molecules measured by bioluminescence photon detection could be directly demonstrated along with simultaneous measurements of unitary K+ currents by voltage clamp, both blocked by specific Fo inhibitors. In the presence of K+, compared to osmotically-matched conditions in which this cation is absent, isolated mitochondria display 3.5-fold higher rates of ATP synthesis, at the expense of 2.6-fold higher rates of oxygen consumption, these fluxes being driven by a 2.7:1 K+: H+ stoichiometry. The excellent agreement between the functional data obtained from purified F1Fo single molecule experiments and ATP synthase studied in the intact mitochondrion under unaltered OxPhos coupling by K+ presence, is entirely consistent with K+ transport through the ATP synthase driving the observed increase in ATP synthesis. Thus, both K+ (harnessing ΔΨm) and H+ (harnessing its chemical potential energy, ΔµH) drive ATP generation during normal physiology.


Asunto(s)
Adenosina Trifosfato , ATPasas de Translocación de Protón Mitocondriales , Animales , ATPasas de Translocación de Protón Mitocondriales/química , Adenosina Trifosfato/metabolismo , Mitocondrias/metabolismo , Consumo de Oxígeno , Mamíferos/metabolismo
5.
Function (Oxf) ; 3(2): zqac001, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35187492

RESUMEN

We demonstrated that ATP synthase serves the functions of a primary mitochondrial K+ "uniporter," i.e., the primary way for K+ to enter mitochondria. This K+ entry is proportional to ATP synthesis, regulating matrix volume and energy supply-vs-demand matching. We show that ATP synthase can be upregulated by endogenous survival-related proteins via IF1. We identified a conserved BH3-like domain of IF1 which overlaps its "minimal inhibitory domain" that binds to the ß-subunit of F1. Bcl-xL and Mcl-1 possess a BH3-binding-groove that can engage IF1 and exert effects, requiring this interaction, comparable to diazoxide to augment ATP synthase's H+ and K+ flux and ATP synthesis. Bcl-xL and Mcl-1, but not Bcl-2, serve as endogenous regulatory ligands of ATP synthase via interaction with IF1 at this BH3-like domain, to increase its chemo-mechanical efficiency, enabling its function as the recruitable mitochondrial KATP-channel that can limit ischemia-reperfusion injury. Using Bayesian phylogenetic analysis to examine potential bacterial IF1-progenitors, we found that IF1 is likely an ancient (∼2 Gya) Bcl-family member that evolved from primordial bacteria resident in eukaryotes, corresponding to their putative emergence as symbiotic mitochondria, and functioning to prevent their parasitic ATP consumption inside the host cell.


Asunto(s)
Mitocondrias , ATPasas de Translocación de Protón Mitocondriales , Teorema de Bayes , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Filogenia , ATPasas de Translocación de Protón Mitocondriales/genética , Mitocondrias/metabolismo , Adenosina Trifosfato/metabolismo
6.
Antioxidants (Basel) ; 11(2)2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35204265

RESUMEN

Donors of nitroxyl (HNO), the one electron-reduction product of nitric oxide (NO.), positively modulate cardiac contractility/relaxation while limiting ischemia-reperfusion (I/R) injury. The mechanisms underpinning HNO anti-ischemic effects remain poorly understood. Using isolated perfused rat hearts subjected to 30 min global ischemia/1 or 2 h reperfusion, here we tested whether, in analogy to NO., HNO protection requires PKCε translocation to mitochondria and KATP channels activation. To this end, we compared the benefits afforded by ischemic preconditioning (IPC; 3 cycles of I/R) with those eventually granted by the NO. donor, diethylamine/NO, DEA/NO, and two chemically unrelated HNO donors: Angeli's salt (AS, a prototypic donor) and isopropylamine/NO (IPA/NO, a new HNO releaser). All donors were given for 19 min before I/R injury. In control I/R hearts (1 h reperfusion), infarct size (IS) measured via tetrazolium salt staining was 66 ± 5.5% of the area at risk. Both AS and IPA/NO were as effective as IPC in reducing IS [30.7 ± 2.2 (AS), 31 ± 2.9 (IPA/NO), and 31 ± 0.8 (IPC), respectively)], whereas DEA/NO was significantly less so (36.2 ± 2.6%, p < 0.001 vs. AS, IPA/NO, or IPC). IPA/NO protection was still present after 120 min of reperfusion, and the co-infusion with the PKCε inhibitor (PKCV1-2500 nM) prevented it (IS = 30 ± 0.5 vs. 61 ± 1.8% with IPA/NO alone, p < 0.01). Irrespective of the donor, HNO anti-ischemic effects were insensitive to the KATP channel inhibitor, 5-OH decanoate (5HD, 100 µM), that, in contrast, abrogated DEA/NO protection. Finally, both HNO donors markedly enhanced the mitochondrial permeability transition pore (mPTP) ROS threshold over control levels (≅35-40%), an action again insensitive to 5HD. Our study shows that HNO donors inhibit mPTP opening, thus limiting myocyte loss at reperfusion, a beneficial effect that requires PKCε translocation to the mitochondria but not mitochondrial K+ channels activation.

7.
J Mol Cell Cardiol ; 165: 9-18, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34954465

RESUMEN

ATP synthase (F1Fo) is a rotary molecular engine that harnesses energy from electrochemical-gradients across the inner mitochondrial membrane for ATP synthesis. Despite the accepted tenet that F1Fo transports exclusively H+, our laboratory has demonstrated that, in addition to H+, F1Fo ATP synthase transports a significant fraction of ΔΨm-driven charge as K+ to synthesize ATP. Herein, we utilize a computational modeling approach as a proof of principle of the feasibility of the core mechanism underlying the enhanced ATP synthesis, and to explore its bioenergetic consequences. A minimal model comprising the 'core' mechanism constituted by ATP synthase, driven by both proton (PMF) and potassium motive force (KMF), respiratory chain, adenine nucleotide translocator, Pi carrier, and K+/H+ exchanger (KHEmito) was able to simulate enhanced ATP synthesis and respiratory fluxes determined experimentally with isolated heart mitochondria. This capacity of F1Fo ATP synthase confers mitochondria with a significant energetic advantage compared to K+ transport through a channel not linked to oxidative phosphorylation (OxPhos). The K+-cycling mechanism requires a KHEmito that exchanges matrix K+ for intermembrane space H+, leaving PMF as the overall driving energy of OxPhos, in full agreement with the standard chemiosmotic mechanism. Experimental data of state 4➔3 energetic transitions, mimicking low to high energy demand, could be reproduced by an integrated computational model of mitochondrial function that incorporates the 'core' mechanism. Model simulations display similar behavior compared to the experimentally observed changes in ΔΨm, mitochondrial K+ uptake, matrix volume, respiration, and ATP synthesis during the energetic transitions at physiological pH and K+ concentration. The model also explores the role played by KHEmito in modulating the energetic performance of mitochondria. The results obtained support the available experimental evidence on ATP synthesis driven by K+ and H+ transport through the F1Fo ATP synthase.


Asunto(s)
Membranas Mitocondriales , Potasio/metabolismo , Protones , Adenosina Trifosfato , Simulación por Computador , Mitocondrias Cardíacas/metabolismo , Membranas Mitocondriales/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo
8.
Front Cardiovasc Med ; 9: 1096887, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36741836

RESUMEN

Background: Aging is associated with increased levels of reactive oxygen species and inflammation that disrupt proteostasis and mitochondrial function and leads to organism-wide frailty later in life. ARA290 (cibinetide), an 11-aa non-hematopoietic peptide sequence within the cardioprotective domain of erythropoietin, mediates tissue protection by reducing inflammation and fibrosis. Age-associated cardiac inflammation is linked to structural and functional changes in the heart, including mitochondrial dysfunction, impaired proteostasis, hypertrophic cardiac remodeling, and contractile dysfunction. Can ARA290 ameliorate these age-associated cardiac changes and the severity of frailty in advanced age? Methods: We conducted an integrated longitudinal (n = 48) and cross-sectional (n = 144) 15 months randomized controlled trial in which 18-month-old Fischer 344 x Brown Norway rats were randomly assigned to either receive chronic ARA290 treatment or saline. Serial echocardiography, tail blood pressure and body weight were evaluated repeatedly at 4-month intervals. A frailty index was calculated at the final timepoint (33 months of age). Tissues were harvested at 4-month intervals to define inflammatory markers and left ventricular tissue remodeling. Mitochondrial and myocardial cell health was assessed in isolated left ventricular myocytes. Kaplan-Meier survival curves were established. Mixed ANOVA tests and linear mixed regression analysis were employed to determine the effects of age, treatment, and age-treatment interactions. Results: Chronic ARA290 treatment mitigated age-related increases in the cardiac non-myocyte to myocyte ratio, infiltrating leukocytes and monocytes, pro-inflammatory cytokines, total NF-κB, and p-NF-κB. Additionally, ARA290 treatment enhanced cardiomyocyte autophagy flux and reduced cellular accumulation of lipofuscin. The cardiomyocyte mitochondrial permeability transition pore response to oxidant stress was desensitized following chronic ARA290 treatment. Concurrently, ARA290 significantly blunted the age-associated elevation in blood pressure and preserved the LV ejection fraction. Finally, ARA290 preserved body weight and significantly reduced other markers of organism-wide frailty at the end of life. Conclusion: Administration of ARA290 reduces cell and tissue inflammation, mitigates structural and functional changes within the cardiovascular system leading to amelioration of frailty and preserved healthspan.

9.
NPJ Aging Mech Dis ; 7(1): 1, 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-33398019

RESUMEN

The intrinsic aerobic capacity of an organism is thought to play a role in aging and longevity. Maximal respiratory rate capacity, a metabolic performance measure, is one of the best predictors of cardiovascular- and all-cause mortality. Rats selectively bred for high-(HCR) vs. low-(LCR) intrinsic running-endurance capacity have up to 31% longer lifespan. We found that positive changes in indices of mitochondrial health in cardiomyocytes (respiratory reserve, maximal respiratory capacity, resistance to mitochondrial permeability transition, autophagy/mitophagy, and higher lipids-over-glucose utilization) are uniformly associated with the extended longevity in HCR vs. LCR female rats. Cross-sectional heart metabolomics revealed pathways from lipid metabolism in the heart, which were significantly enriched by a select group of strain-dependent metabolites, consistent with enhanced lipids utilization by HCR cardiomyocytes. Heart-liver-serum metabolomics further revealed shunting of lipidic substrates between the liver and heart via serum during aging. Thus, mitochondrial health in cardiomyocytes is associated with extended longevity in rats with higher intrinsic exercise capacity and, probably, these findings can be translated to other populations as predictors of outcomes of health and survival.

10.
J Mol Cell Cardiol ; 151: 113-125, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33301801

RESUMEN

Heart failure (HF) is a progressive, debilitating condition characterized, in part, by altered ionic equilibria, increased ROS production and impaired cellular energy metabolism, contributing to variable profiles of systolic and diastolic dysfunction with significant functional limitations and risk of premature death. We summarize current knowledge concerning changes of intracellular Na+ and Ca2+ control mechanisms during the disease progression and their consequences on mitochondrial Ca2+ homeostasis and the shift in redox balance. Absent existing biological data, our computational modeling studies advance a new 'in silico' analysis to reconcile existing opposing views, based on different experimental HF models, regarding variations in mitochondrial Ca2+ concentration that participate in triggering and perpetuating oxidative stress in the failing heart and their impact on cardiac energetics. In agreement with our hypothesis and the literature, model simulations demonstrate the possibility that the heart's redox status together with cytoplasmic Na+ concentrations act as regulators of mitochondrial Ca2+ levels in HF and of the bioenergetics response that will ultimately drive ATP supply and oxidative stress. The resulting model predictions propose future directions to study the evolution of HF as well as other types of heart disease, and to develop novel testable mechanistic hypotheses that may lead to improved therapeutics.


Asunto(s)
Calcio/metabolismo , Insuficiencia Cardíaca/metabolismo , Mitocondrias Cardíacas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Humanos , Oxidación-Reducción , Estrés Oxidativo , Sodio/metabolismo
11.
JACC Clin Electrophysiol ; 6(8): 907-931, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32819526

RESUMEN

OBJECTIVES: This study sought to identify subcellular Ca2+ signals within and among cells comprising the sinoatrial node (SAN) tissue. BACKGROUND: The current paradigm of SAN impulse generation: 1) is that full-scale action potentials (APs) of a common frequency are initiated at 1 site and are conducted within the SAN along smooth isochrones; and 2) does not feature fine details of Ca2+ signaling present in isolated SAN cells, in which small subcellular, subthreshold local Ca2+ releases (LCRs) self-organize to generate cell-wide APs. METHODS: Immunolabeling was combined with a novel technique to detect the occurrence of LCRs and AP-induced Ca2+ transients (APCTs) in individual pixels (chronopix) across the entire mouse SAN images. RESULTS: At high magnification, Ca2+ signals appeared markedly heterogeneous in space, amplitude, frequency, and phase among cells comprising an HCN4+/CX43- cell meshwork. The signaling exhibited several distinguishable patterns of LCR/APCT interactions within and among cells. Rhythmic APCTs that were apparently conducted within the meshwork were transferred to a truly conducting HCN4-/CX43+ network of striated cells via narrow functional interfaces where different cell types intertwine, that is, the SAN anatomic/functional unit. At low magnification, the earliest APCT of each cycle occurred within a small area of the HCN4 meshwork, and subsequent APCT appearance throughout SAN pixels was discontinuous and asynchronous. CONCLUSIONS: The study has discovered a novel, microscopic Ca2+ signaling paradigm of SAN operation that has escaped detection using low-resolution, macroscopic tissue isochrones employed in prior studies: synchronized APs emerge from heterogeneous subcellular subthreshold Ca2+ signals, resembling multiscale complex processes of impulse generation within clusters of neurons in neuronal networks.


Asunto(s)
Calcio , Marcapaso Artificial , Potenciales de Acción , Animales , Ratones , Miocitos Cardíacos , Nodo Sinoatrial
12.
Anal Biochem ; 552: 50-59, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28711444

RESUMEN

The mitochondrial membrane potential (ΔΨm) generated by proton pumps (Complexes I, III and IV) is an essential component in the process of energy storage during oxidative phosphorylation. Together with the proton gradient (ΔpH), ΔΨm forms the transmembrane potential of hydrogen ions which is harnessed to make ATP. The levels of ΔΨm and ATP in the cell are kept relatively stable although there are limited fluctuations of both these factors that can occur reflecting normal physiological activity. However, sustained changes in both factors may be deleterious. A long-lasting drop or rise of ΔΨm vs normal levels may induce unwanted loss of cell viability and be a cause of various pathologies. Among other factors, ΔΨm plays a key role in mitochondrial homeostasis through selective elimination of dysfunctional mitochondria. It is also a driving force for transport of ions (other than H+) and proteins which are necessary for healthy mitochondrial functioning. We propose additional potential mechanisms for which ΔΨm is essential for maintenance of cellular health and viability and provide recommendations how to accurately measure ΔΨm in a cell and discuss potential sources of artifacts.


Asunto(s)
Potencial de la Membrana Mitocondrial , Aniones/metabolismo , Cationes/metabolismo , Homeostasis , Humanos , Transporte Iónico , Mitocondrias/metabolismo
13.
Clin Sci (Lond) ; 130(15): 1285-305, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27358026

RESUMEN

Food nutrients and metabolic supply-demand dynamics constitute environmental factors that interact with our genome influencing health and disease states. These gene-environment interactions converge at the metabolic-epigenome-genome axis to regulate gene expression and phenotypic outcomes. Mounting evidence indicates that nutrients and lifestyle strongly influence genome-metabolic functional interactions determining disease via altered epigenetic regulation. The mitochondrial network is a central player of the metabolic-epigenome-genome axis, regulating the level of key metabolites [NAD(+), AcCoA (acetyl CoA), ATP] acting as substrates/cofactors for acetyl transferases, kinases (e.g. protein kinase A) and deacetylases (e.g. sirtuins, SIRTs). The chromatin, an assembly of DNA and nucleoproteins, regulates the transcriptional process, acting at the epigenomic interface between metabolism and the genome. Within this framework, we review existing evidence showing that preservation of mitochondrial network function is directly involved in decreasing the rate of damage accumulation thus slowing aging and improving healthspan.


Asunto(s)
Envejecimiento/metabolismo , Metabolismo Energético , Epigénesis Genética , Genoma Humano , Estado de Salud , Mitocondrias/metabolismo , Adolescente , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Envejecimiento/genética , Envejecimiento/patología , Animales , Niño , Preescolar , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Regulación de la Expresión Génica , Interacción Gen-Ambiente , Humanos , Lactante , Recién Nacido , Estilo de Vida , Longevidad , Persona de Mediana Edad , Mitocondrias/genética , Mitocondrias/patología , Mutación , Estado Nutricional , Adulto Joven
14.
J Mol Cell Cardiol ; 98: 73-82, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27363295

RESUMEN

Constitutive Ca(2+)/calmodulin (CaM)-activation of adenylyl cyclases (ACs) types 1 and 8 in sinoatrial nodal cells (SANC) generates cAMP within lipid-raft-rich microdomains to initiate cAMP-protein kinase A (PKA) signaling, that regulates basal state rhythmic action potential firing of these cells. Mounting evidence in other cell types points to a balance between Ca(2+)-activated counteracting enzymes, ACs and phosphodiesterases (PDEs) within these cells. We hypothesized that the expression and activity of Ca(2+)/CaM-activated PDE Type 1A is higher in SANC than in other cardiac cell types. We found that PDE1A protein expression was 5-fold higher in sinoatrial nodal tissue than in left ventricle, and its mRNA expression was 12-fold greater in the corresponding isolated cells. PDE1 activity (nimodipine-sensitive) accounted for 39% of the total PDE activity in SANC lysates, compared to only 4% in left ventricular cardiomyocytes (LVC). Additionally, total PDE activity in SANC lysates was lowest (10%) in lipid-raft-rich and highest (76%) in lipid-raft-poor fractions (equilibrium sedimentation on a sucrose density gradient). In intact cells PDE1A immunolabeling was not localized to the cell surface membrane (structured illumination microscopy imaging), but located approximately within about 150nm inside of immunolabeling of hyperpolarization-activated cyclic nucleotide-gated potassium channels (HCN4), which reside within lipid-raft-rich microenvironments. In permeabilized SANC, in which surface membrane ion channels are not functional, nimodipine increased spontaneous SR Ca(2+) cycling. PDE1A mRNA silencing in HL-1 cells increased the spontaneous beating rate, reduced the cAMP, and increased cGMP levels in response to IBMX, a broad spectrum PDE inhibitor (detected via fluorescence resonance energy transfer microscopy). We conclude that signaling via cAMP generated by Ca(2+)/CaM-activated AC in SANC lipid raft domains is limited by cAMP degradation by Ca(2+)/CaM-activated PDE1A in non-lipid raft domains. This suggests that local gradients of [Ca(2+)]-CaM or different AC and PDE1A affinity regulate both cAMP production and its degradation, and this balance determines the intensity of Ca(2+)-AC-cAMP-PKA signaling that drives SANC pacemaker function.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 1/genética , Expresión Génica , Sistema de Conducción Cardíaco , Nodo Sinoatrial/citología , Nodo Sinoatrial/metabolismo , Animales , Calcio/metabolismo , Calmodulina/metabolismo , Línea Celular , AMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 1/metabolismo , Activación Enzimática , Activación del Canal Iónico , Mitocondrias , Modelos Biológicos , Miocitos Cardíacos/metabolismo , Especificidad de Órganos/genética , Conejos , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Transducción de Señal
15.
Physiol Rev ; 94(3): 909-50, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24987008

RESUMEN

Byproducts of normal mitochondrial metabolism and homeostasis include the buildup of potentially damaging levels of reactive oxygen species (ROS), Ca(2+), etc., which must be normalized. Evidence suggests that brief mitochondrial permeability transition pore (mPTP) openings play an important physiological role maintaining healthy mitochondria homeostasis. Adaptive and maladaptive responses to redox stress may involve mitochondrial channels such as mPTP and inner membrane anion channel (IMAC). Their activation causes intra- and intermitochondrial redox-environment changes leading to ROS release. This regenerative cycle of mitochondrial ROS formation and release was named ROS-induced ROS release (RIRR). Brief, reversible mPTP opening-associated ROS release apparently constitutes an adaptive housekeeping function by the timely release from mitochondria of accumulated potentially toxic levels of ROS (and Ca(2+)). At higher ROS levels, longer mPTP openings may release a ROS burst leading to destruction of mitochondria, and if propagated from mitochondrion to mitochondrion, of the cell itself. The destructive function of RIRR may serve a physiological role by removal of unwanted cells or damaged mitochondria, or cause the pathological elimination of vital and essential mitochondria and cells. The adaptive release of sufficient ROS into the vicinity of mitochondria may also activate local pools of redox-sensitive enzymes involved in protective signaling pathways that limit ischemic damage to mitochondria and cells in that area. Maladaptive mPTP- or IMAC-related RIRR may also be playing a role in aging. Because the mechanism of mitochondrial RIRR highlights the central role of mitochondria-formed ROS, we discuss all of the known ROS-producing sites (shown in vitro) and their relevance to the mitochondrial ROS production in vivo.


Asunto(s)
Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Calcio/metabolismo , Humanos , Potencial de la Membrana Mitocondrial , Enfermedades Mitocondriales/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Estrés Oxidativo
16.
J Gen Physiol ; 143(5): 577-604, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24778430

RESUMEN

The sinoatrial node, whose cells (sinoatrial node cells [SANCs]) generate rhythmic action potentials, is the primary pacemaker of the heart. During diastole, calcium released from the sarcoplasmic reticulum (SR) via ryanodine receptors (RyRs) interacts with membrane currents to control the rate of the heartbeat. This "calcium clock" takes the form of stochastic, partially periodic, localized calcium release (LCR) events that propagate, wave-like, for limited distances. The detailed mechanisms controlling the calcium clock are not understood. We constructed a computational model of SANCs, including three-dimensional diffusion and buffering of calcium in the cytosol and SR; explicit, stochastic gating of individual RyRs and L-type calcium channels; and a full complement of voltage- and calcium-dependent membrane currents. We did not include an anatomical submembrane space or inactivation of RyRs, the two heuristic components that have been used in prior models but are not observed experimentally. When RyRs were distributed in discrete clusters separated by >1 µm, only isolated sparks were produced in this model and LCR events did not form. However, immunofluorescent staining of SANCs for RyR revealed the presence of bridging RyR groups between large clusters, forming an irregular network. Incorporation of this architecture into the model led to the generation of propagating LCR events. Partial periodicity emerged from the interaction of LCR events, as observed experimentally. This calcium clock becomes entrained with membrane currents to accelerate the beating rate, which therefore was controlled by the activity of the SERCA pump, RyR sensitivity, and L-type current amplitude, all of which are targets of ß-adrenergic-mediated phosphorylation. Unexpectedly, simulations revealed the existence of a pathological mode at high RyR sensitivity to calcium, in which the calcium clock loses synchronization with the membrane, resulting in a paradoxical decrease in beating rate in response to ß-adrenergic stimulation. The model indicates that the hierarchical clustering of surface RyRs in SANCs may be a crucial adaptive mechanism. Pathological desynchronization of the clocks may explain sinus node dysfunction in heart failure and RyR mutations.


Asunto(s)
Potenciales de Acción , Relojes Biológicos , Señalización del Calcio , Modelos Cardiovasculares , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Nodo Sinoatrial/fisiología , Animales , Conejos , Nodo Sinoatrial/citología , Nodo Sinoatrial/metabolismo
17.
Am J Physiol Heart Circ Physiol ; 306(10): H1385-97, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24633551

RESUMEN

A reduced sinoatrial node (SAN) functional reserve underlies the age-associated decline in heart rate acceleration in response to stress. SAN cell function involves an oscillatory coupled-clock system: the sarcoplasmic reticulum (SR), a Ca(2+) clock, and the electrogenic-sarcolemmal membrane clock. Ca(2+)-activated-calmodulin-adenylyl cyclase/CaMKII-cAMP/PKA-Ca(2+) signaling regulated by phosphodiesterase activity drives SAN cells automaticity. SR-generated local calcium releases (LCRs) activate Na(+)/Ca(2+) exchanger in the membrane clock, which initiates the action potential (AP). We hypothesize that SAN cell dysfunctions accumulate with age. We found a reduction in single SAN cell AP firing in aged (20-24 mo) vs. adult (3-4 mo) mice. The sensitivity of the SAN beating rate responses to both muscarinic and adrenergic receptor activation becomes decreased in advanced age. Additionally, age-associated coincident dysfunctions occur stemming from compromised clock functions, including a reduced SR Ca(2+) load and a reduced size, number, and duration of spontaneous LCRs. Moreover, the sensitivity of SAN beating rate to a cAMP stress induced by phosphodiesterase inhibitor is reduced, as are the LCR size, amplitude, and number in SAN cells from aged vs. adult mice. These functional changes coincide with decreased expression of crucial SR Ca(2+)-cycling proteins, including SR Ca(2+)-ATPase pump, ryanodine receptors, and Na(+)/Ca(2+) exchanger. Thus a deterioration in intrinsic Ca(2+) clock kinetics in aged SAN cells, due to deficits in intrinsic SR Ca(2+) cycling and its response to a cAMP-dependent pathway activation, is involved in the age-associated reduction in intrinsic resting AP firing rate, and in the reduction in the acceleration of heart rate during exercise.


Asunto(s)
Envejecimiento/fisiología , Calcio/deficiencia , Proteínas Quinasas Dependientes de AMP Cíclico/deficiencia , AMP Cíclico/deficiencia , Transducción de Señal/fisiología , Nodo Sinoatrial/fisiopatología , Potenciales de Acción/fisiología , Animales , Calcio/fisiología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/deficiencia , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/fisiología , AMP Cíclico/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Frecuencia Cardíaca/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Retículo Sarcoplasmático/fisiología , Estrés Fisiológico/fisiología
18.
Trends Endocrinol Metab ; 24(10): 495-505, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23845538

RESUMEN

In advanced age, the resting myocardial oxygen consumption rate (MVO2) and cardiac work (CW) in the rat remain intact. However, MVO2, CW and cardiac efficiency achieved at high demand are decreased with age, compared to maximal values in the young. Whether this deterioration is due to decrease in myocardial ATP demand, ATP supply, or the control mechanisms that match them remains controversial. Here we discuss evolving perspectives of age-related changes of myocardial ATP supply and demand mechanisms, and critique experimental models used to investigate aging. Specifically, we evaluate experimental data collected at the level of isolated mitochondria, tissue, or organism, and discuss how mitochondrial energetic mechanisms change in advanced age, both at basal and high energy-demand levels.


Asunto(s)
Miocardio/metabolismo , Envejecimiento/fisiología , Animales , Metabolismo Energético/fisiología , Humanos , Mitocondrias/metabolismo
19.
J Mol Cell Cardiol ; 51(5): 730-9, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21840316

RESUMEN

Recent perspectives on sinoatrial nodal cell (SANC)(*) function indicate that spontaneous sarcoplasmic reticulum (SR) Ca(2+) cycling, i.e. an intracellular "Ca(2+) clock," driven by cAMP-mediated, PKA-dependent phosphorylation, interacts with an ensemble of surface membrane electrogenic molecules ("surface membrane clock") to drive SANC normal automaticity. The role of AC-cAMP-PKA-Ca(2+) signaling cascade in mouse, the species most often utilized for genetic manipulations, however, has not been systematically tested. Here we show that Ca(2+) cycling proteins (e.g. RyR2, NCX1, and SERCA2) are abundantly expressed in mouse SAN and that spontaneous, rhythmic SR generated local Ca(2+) releases (LCRs) occur in skinned mouse SANC, clamped at constant physiologic [Ca(2+)]. Mouse SANC also exhibits a high basal level of phospholamban (PLB) phosphorylation at the PKA-dependent site, Serine16. Inhibition of intrinsic PKA activity or inhibition of PDE in SANC, respectively: reduces or increases PLB phosphorylation, and markedly prolongs or reduces the LCR period; and markedly reduces or accelerates SAN spontaneous firing rate. Additionally, the increase in AP firing rate by PKA-dependent phosphorylation by ß-adrenergic receptor (ß-AR) stimulation requires normal intracellular Ca(2+) cycling, because the ß-AR chronotropic effect is markedly blunted when SR Ca(2+) cycling is disrupted. Thus, AC-cAMP-PKA-Ca(2+) signaling cascade is a major mechanism of normal automaticity in mouse SANC.


Asunto(s)
Señalización del Calcio/fisiología , Proteínas de Unión al Calcio/metabolismo , Calcio/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Regulación de la Expresión Génica/fisiología , Frecuencia Cardíaca/fisiología , Nodo Sinoatrial/metabolismo , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Señalización del Calcio/efectos de los fármacos , Proteínas de Unión al Calcio/genética , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Regulación de la Expresión Génica/efectos de los fármacos , Frecuencia Cardíaca/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Periodicidad , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Receptores Adrenérgicos beta/genética , Receptores Adrenérgicos beta/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/efectos de los fármacos , Retículo Sarcoplasmático/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Nodo Sinoatrial/citología , Nodo Sinoatrial/efectos de los fármacos , Nodo Sinoatrial/fisiología , Intercambiador de Sodio-Calcio/genética , Intercambiador de Sodio-Calcio/metabolismo
20.
J Mol Cell Cardiol ; 51(5): 740-8, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21835182

RESUMEN

RATIONALE: In sinoatrial node cells (SANC), Ca(2+) activates adenylate cyclase (AC) to generate a high basal level of cAMP-mediated/protein kinase A (PKA)-dependent phosphorylation of Ca(2+) cycling proteins. These result in spontaneous sarcoplasmic-reticulum (SR) generated rhythmic Ca(2+) oscillations during diastolic depolarization, that not only trigger the surface membrane to generate rhythmic action potentials (APs), but, in a feed-forward manner, also activate AC/PKA signaling. ATP is consumed to pump Ca(2+) to the SR, to produce cAMP, to support contraction and to maintain cell ionic homeostasis. OBJECTIVE: Since feedback mechanisms link ATP-demand to ATP production, we hypothesized that (1) both basal ATP supply and demand in SANC would be Ca(2+)-cAMP/PKA dependent; and (2) due to its feed-forward nature, a decrease in flux through the Ca(2+)-cAMP/PKA signaling axis will reduce the basal ATP production rate. METHODS AND RESULTS: O(2) consumption in spontaneous beating SANC was comparable to ventricular myocytes (VM) stimulated at 3 Hz. Graded reduction of basal Ca(2+)-cAMP/PKA signaling to reduce ATP demand in rabbit SANC produced graded ATP depletion (r(2)=0.96), and reduced O(2) consumption and flavoprotein fluorescence. Neither inhibition of glycolysis, selectively blocking contraction nor specific inhibition of mitochondrial Ca(2+) flux reduced the ATP level. CONCLUSIONS: Feed-forward basal Ca(2+)-cAMP/PKA signaling both consumes ATP to drive spontaneous APs in SANC and is tightly linked to mitochondrial ATP production. Interfering with Ca(2+)-cAMP/PKA signaling not only slows the firing rate and reduces ATP consumption, but also appears to reduce ATP production so that ATP levels fall. This distinctly differs from VM, which lack this feed-forward basal cAMP/PKA signaling, and in which ATP level remains constant when the demand changes.


Asunto(s)
Adenosina Trifosfato/biosíntesis , Señalización del Calcio/fisiología , Calcio/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/biosíntesis , Retroalimentación Fisiológica , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Nodo Sinoatrial/metabolismo , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Adenilil Ciclasas/genética , Adenilil Ciclasas/metabolismo , Animales , Señalización del Calcio/efectos de los fármacos , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Inhibidores Enzimáticos/farmacología , Glucólisis/efectos de los fármacos , Glucólisis/fisiología , Frecuencia Cardíaca/efectos de los fármacos , Frecuencia Cardíaca/fisiología , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , ATPasas de Translocación de Protón Mitocondriales/antagonistas & inhibidores , ATPasas de Translocación de Protón Mitocondriales/genética , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Consumo de Oxígeno , Periodicidad , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Conejos , Retículo Sarcoplasmático/efectos de los fármacos , Retículo Sarcoplasmático/metabolismo , Nodo Sinoatrial/citología , Nodo Sinoatrial/efectos de los fármacos , Nodo Sinoatrial/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA